Ignition Probability for High Pressure Gas Transmission Pipelines

Author:

Acton Michael R.1,Baldwin Philip J.1

Affiliation:

1. Advantica Ltd., Loughborough, Leicestershire, UK

Abstract

For most fuels transported by pipeline, whether or not ignition of an accidental release occurs is a critical factor in determining the extent of the resulting hazard. The probability of ignition is therefore a key input when undertaking pipeline risk assessments and the value chosen is a direct multiplier of the risk calculated. Typically, the ignition probability assigned is based on an analysis of historical data. However, the pipeline industry has a good safety record and major incidents are rare, sometimes resulting in widely differing values being used due to the scarcity of reliable data. For high pressure natural gas transmission pipelines, it is observed that ruptures of large diameter underground pipelines operating at high pressures can result in ignited releases even in remote areas with no obvious ignition sources present. Conversely, failures of small diameter pipelines operating at lower pressures rarely result in ignited releases, suggesting that ignition sources generated as a result of the failure event itself may be significant in causing ignition of high pressure natural gas releases from underground pipelines. The results of analysis previously reported at IPC2002 indicated a trend for the ignition probability to increase with pd2, with p the pipeline operating pressure (bar) and d the pipeline diameter (m). The relationship forms the basis of the default ignition probabilities recommended for use in the PIPESAFE package developed for risk assessment of gas transmission pipelines. Since the previous study was carried out, the number of pipeline rupture incidents in the dataset used has increased by about 20%, and following a recent review, the statistical analysis has been extended and refined. This paper reports the results of recent analysis of the most comprehensive incident dataset available to Advantica for natural gas transmission pipelines, presenting the correlation derived from a simple statistical analysis together with consideration of possible physical explanations for the trends observed based on an ongoing programme of research into the causes of ignition.

Publisher

ASMEDC

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3