Fracture Control in Pipelines Under High Plastic Strains: A Critique of DNV-RP-F108

Author:

Cosham Andrew1,Macdonald Kenneth A.2

Affiliation:

1. Atkins Boreas, Newcastle Upon Tyne, UK

2. University of Stavanger & Acergy Norway AS, Norway

Abstract

Offshore pipelines experience strains greater than yield during pipelay and in service. Installation by reeling introduces high levels of plastic strain, typically on the order of 2 percent for a 12 in. flowline. Controlled lateral buckling in offshore pipelines, due to high operating pressures and/or temperatures, may also give rise to high strains and large cyclic loads. Similarly, frost heave or ground movement in onshore pipelines can cause high strains. To date, most of the cases involving high strains are to be found in offshore pipelines, in terms of both design and the assessment of accidental states. However, some of the experiences in the offshore industry have relevance to onshore pipelines. Fracture control in this context is designing pipelines to address the implications of these high static and cyclic strains during installation/construction and operation. Pipeline design codes such as DNV-OS-F101 and DNV-RP-F108 give guidance. Two issues to consider are: the degradation of the material properties, and the failure of the girth welds. High strains may cause failure or the growth — by stable ductile tearing — of preexisting flaws in the weld. Subsequent fatigue loading may cause pre-existing flaws to grow to failure. Engineering critical assessments (ECAs) are conducted during pipeline design to determine tolerable sizes for weld flaws. Standards such as BS 7910 and API 579 are primarily stress-based and it is not straightforward to apply them to strain-based situations. DNV-RP-F108 addresses this gap by providing additional guidance derived from UK and Norwegian research programmes. Assessing flaws subject to high strains is at the ‘cutting-edge’ of applied fracture mechanics. ECAs often have a reputation of being ‘over-conservative’. ECAs of pipelines subject to high strains may indicate that only very small flaws would be acceptable, whereas practical experience has shown that the girth welds are highly tolerant to the presence of flaws. It is therefore instructive to consider under what situations might ECAs be too conservative, and when they may be non-conservative. The available guidance for ensuring fracture control in pipelines under high plastic strains is discussed in this paper, and the wider issues are addressed.

Publisher

ASMEDC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3