A 3-Dimensional Continuum ALE Model for Soil-Pipe Interaction

Author:

Fredj Abdelfettah1,Dinovitzer Aaron1,Zhou Joe2

Affiliation:

1. BMT Fleet Technology Limited, Kanata, Ontario, Canada

2. Trans Canada, Calgary, Alberta, Canada

Abstract

Soil-pipe interactions when large ground movements occur are an important consideration in pipeline design, route selection, guide monitoring and reduce the risk of damage or failure. Large ground movement can be caused by slope failures, faulting, landslides and seismic activities. Such conditions induce large deformations of both the soil and pipe. Analyses of such behavior pose a significant challenge to capabilities of standard finite elements as the capability to analyze large deformations is required. This requirement is difficult to meet for Lagrangian-based code. New developments using ALE methods make it possible to determine soil and pipe deformation confidently for large displacements. This paper describes a study performed to investigate the mechanical behavior of a pipeline subjected to large soil movement. A 3D continuum modeling using an ALE (Arbitrary Eulerian Lagrangian) formulation was developed and run using LS-DYNA. The results are compared with published experimental data of large-scale test to verify the numerical analysis method. The analysis is further extended to analyze the soil-pipe interaction under permanent ground deformation such as those associated with surface fault rupture and landslides.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3