Thermodynamic Performance Investigation of Environmentally Friendly Working Fluids in a Geothermal Integrated Pumped Thermal Energy Storage System

Author:

Mwesigye Aggrey1

Affiliation:

1. University of Calgary Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, , Calgary, AB T2N 1N4, Canada

Abstract

Abstract Among the available energy storage technologies, pumped thermal energy storage (PTES) is emerging as a potential solution for large-scale electrical energy storage with high round-trip efficiencies and no geographical limitations. However, PTES requires a low-cost, high-temperature heat source to achieve reasonable round-trip efficiencies. Moreover, organic Rankine cycle-based PTES systems require high-performance and environmentally friendly working fluids. In this study, the thermodynamic performance of a geothermal integrated PTES system using environmentally friendly working fluids is investigated. The mathematical model of the geothermal integrated PTES system is developed using the first and second laws of thermodynamics and implemented in Engineering Equation Solver (EES). With the developed model, the thermodynamic performance of the PTES system for different working fluids, including butene, cyclopentane, isobutene, R1233zd(E), R1234ze(Z), R1224yd(Z), HFO1336mzz(Z), n-hexane, and n-pentane was investigated. For geothermal fluid outlet temperatures between 60 °C and 120 °C and geothermal fluid inlet and outlet temperature differences across the evaporator between 20 °C and 60 °C, the net power ratio, i.e., the ratio of the electrical energy discharged to the electrical energy used to run the charging cycle, is between 0.25 and 1.40. This shows that the system has the potential to give back more than 100% of the electrical energy used during charging under certain conditions. High net power ratios are obtained for a combination of high source temperatures and low geothermal fluid inlet and outlet temperature differences.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3