Self Lubricating Composite Coatings Containing TiC–MnS or WC-MnS Compounds Prepared by the Plasma Transferred Arc (PTA) Technique

Author:

Skarvelis P.1,Papadimitriou G. D.1,Perraki M.2

Affiliation:

1. Department of Metallurgy and Materials Technology, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece

2. Department of Geosciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece

Abstract

Composite coatings containing manganese sulphide as lubricating addition and enhanced with hard carbide particles (TiC, WC) were synthesized on a plain steel substrate using the plasma transferred arc technique. The coatings are well bonded to the substrate, have a thickness of about 1 mm, and are free of any visual defects. They consist mainly of a martensitic or ferritic matrix enhanced with titanium or tungsten carbides and a dispersion of MnS particles. The tribological properties of the composites are assessed using a pin-on-disk device. Both composites possess self lubricating properties, due to the formation of a thin layer of manganese sulphide on their wear tracks. The corresponding friction coefficients vary between 0.25 and 0.28, compared with 0.50–0.60 obtained from similar hard coatings without MnS addition. The wear rates are of the order of 10−5 mm3/m N and are two orders of magnitude lower than those obtained from the substrate material with MnS addition, but without the presence of hard enhancing particles. The wear regime is mild abrasion due to the combined action of both lubricating (MnS) and hard (TiC or WC) particles.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3