Lattice Boltzmann Simulation of Mixed Convection Heat Transfer in a Lid-Driven Square Cavity Filled With Nanofluid: A Revisit

Author:

Ekici Özgür1

Affiliation:

1. Department of Mechanical Engineering, Hacettepe University, Ankara 06800, Turkey

Abstract

Mixed convection heat transfer of Al2O3 nanofluid in a lid-driven square cavity with differentially heated vertical walls is studied numerically with lattice Boltzmann method (LBM). In order to understand the reasons for the conflicting results on heat transfer enhancement in cavity problems, formulation of nondimensional properties and modeling thermophysical properties, in accordance with the relative effects of natural and forced convection flows, are examined. In addition to gain more insight into the physics, one of the goals of the study is to identify the reasons of existing contradictory findings; therefore, a single-phase formulation is adopted as has been the case in the majority of related literature to date. To isolate the effects of thermophysical properties on the results and to maintain the same natural and forced convection effects, all nondimensional parameters are defined using the corresponding thermophysical properties of the fluid under examination. Two different effective thermal conductivity and viscosity models are tested for a range of Reynolds and Rayleigh numbers to investigate their effects on the nanofluid behavior. Depending on the effective viscosity model, an increase or decrease is obtained in the average Nusselt number. It is also illustrated that the relative magnitudes of effective thermal conductivity values for different models do not translate into the heat transfer enhancement due to convective effects. Moreover, it is shown that thermal behavior of nanofluid approaches to the one of base fluid's as the buoyancy driven flow gets stronger, which is independent of the employed effective property models.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference43 articles.

1. Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles);Netsu Bussei,1993

2. Enhancing Thermal Conductivity of Fluids With Nanoparticles,1995

3. Heat Transfer in Nanofluids—A Review;Heat Transfer Eng.,2006

4. Heat Transfer Characteristics of Nanofluids: A Review;Int. J. Therm. Sci.,2007

5. Review of Convective Heat Transfer Enhancement With Nanofluids;Int. J. Heat Mass Transfer,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3