Heat Transfer Performance of Green Bioglycol-Based TiO2–SiO2 Nanofluids

Author:

Zainon S. N. M.1,Azmi W. H.2

Affiliation:

1. Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang 26300, Malaysia

2. Department of Mechanical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang 26300, Malaysia; Centre for Research in Advanced Fluid and Processes, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang 26300, Malaysia

Abstract

Abstract The dispersion of nanoparticles in conventional heat transfer fluids has been proven to improve the performance of the fluids. However, the study on the heat transfer performance of hybrid nanofluids in the mixture of water and green bioglycol (BG) is limited in the literature. This paper presents the heat transfer performance and friction factor of green BG-based TiO2–SiO2 nanofluids. The TiO2 and SiO2 nanoparticles were dispersed in the mixture of 60:40 water: bioglycol (W/BG) and prepared at various concentrations up to 2.5% and composition ratios of 20:80. The experimental study on forced convection heat transfer was done under turbulent flow at constant heat flux for operating temperature of 70 °C. The heat transfer enhancement increased significantly with volume concentrations. The maximum heat transfer enhancements of the TiO2–SiO2 nanofluids at bulk temperature of 70 °C were observed to be up to 67.81% for 2.5% volume concentration. A slight friction factor escalation of the nanofluids was observed with 12% maximum increment. New correlations were developed to estimate the Nusselt number, and friction factor with average deviations of less than 4.3%. As a conclusion, the employment of the ecofriendly coolant nanofluids in improving thermal performance is proven and applicable for turbulent forced convection heat transfer applications.

Funder

Ministry of Higher Education, Malaysia

Universiti Malaysia Pahang

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3