Shear Wave-Induced Friction at Periodic Interfaces for Programmable Mechanical Responses

Author:

Patil Ganesh U.1,Fantetti Alfredo2,Matlack Kathryn H.1

Affiliation:

1. University of Illinois Urbana-Champaign Department of Mechanical Science and Engineering, , 1206 W. Green Street, Urbana, IL 61801

2. Imperial College London Department of Mechanical Engineering, , South Kensington Campus, London SW7 2AZ , UK

Abstract

Abstract Nonlinear phononic materials enable superior wave responses by combining nonlinearity with their inherent periodicity, creating opportunities for the development of novel acoustic devices. However, the field has largely focused on reversible nonlinearities, whereas the role of hysteretic nonlinearity remains unexplored. In this work, we investigate nonlinear shear wave responses arising from the hysteretic nonlinearity of frictional rough contacts, and harness these responses to enable programmable functions. By using a numerical approach, we solve the strongly nonlinear problem of shear wave propagation through a single contact and a periodic array of contacts, accounting for frictional effects. Specifically, the Jenkin friction model with experimentally obtained properties is used to capture the effects of stick–slip transition at the contacts. Results show that friction gives rise to shear-polarized eigenstrains, which are residual static deformations within the system. We then demonstrate how eigenstrain generation in multiple contacts can enable programmable functionalities such as an acoustically controlled mechanical switch, precision position control, and surface reconfigurability. Overall, our findings open new avenues for designing smart materials and devices with advanced functionalities via acoustic waves using the hysteretic nonlinearity of frictional contacts.

Funder

Army Research Office

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3