Analyzing the Effects of Temperature, Nozzle-Bed Distance, and Their Interactions on the Width of Fused Deposition Modeled Struts Using Statistical Techniques Toward Precision Scaffold Fabrication

Author:

Ravi Prashanth1,Shiakolas Panos S.1,Dnyaneshwar Thorat Avinash2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, Box 19023, Arlington, TX 76019-0023 e-mail:

2. Department of Industrial, Manufacturing and Systems Engineering, The University of Texas at Arlington, Box 19023, Arlington, TX 76019-0023 e-mail:

Abstract

Fused deposition modeling (FDM) is currently one of the most widely utilized prototyping technologies. Studies employing statistical techniques have been conducted to develop empirical relationships between FDM process factors and output variables such as dimensional accuracy, surface roughness, and mechanical properties of the fabricated structures. However, the effects of nozzle temperature (T), nozzle-bed distance (NBD), and their interactions on strut width (SW) have not been investigated. In the present work, a two-way factorial study with three levels of T and NBD in triplicates was undertaken. A fixed-effects model with interaction was proposed and remedial measures based on the error analysis were performed to obtain correct inferences. The factor main/interaction effects were all found to be statistically significant (p < 0.05) using analysis of variance (ANOVA). Multiple comparisons were conducted between treatment means using the Tukey's method. A multiple linear regression (MLR) model (R2 = 0.95) was subsequently developed to enable the prediction of SW. The developed MLR model was verified experimentally; by (1) the fabrication of individual struts and (2) the fabrication of single-layer scaffolds with parallel raster patterns. The percentage error between the predicted and observed widths of individually fabricated struts was 3.2%, and the error between predicted and observed SW/spacing for the single-layer scaffolds was ≤ 5.5%. Results indicate that a similar statistical methodology could be potentially employed to identify levels of T and NBD that yield defined width struts using open architecture, personal or commercial FDM setups, and existing/new materials.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference27 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3