Finding Only Finite Roots to Large Kinematic Synthesis Systems

Author:

Plecnik Mark M.1,Fearing Ronald S.2

Affiliation:

1. Biomimetic Millisystems Lab, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 e-mail:

2. Professor Biomimetic Millisystems Lab, Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720 e-mail:

Abstract

In this work, a new method is introduced for solving large polynomial systems for the kinematic synthesis of linkages. The method is designed for solving systems with degrees beyond 100,000, which often are found to possess quantities of finite roots that are orders of magnitude smaller. Current root-finding methods for large polynomial systems discover both finite and infinite roots, although only finite roots have meaning for engineering purposes. Our method demonstrates how all infinite roots can be precluded in order to obtain substantial computational savings. Infinite roots are avoided by generating random linkage dimensions to construct startpoints and start systems for homotopy continuation paths. The method is benchmarked with a four-bar path synthesis problem.

Funder

National Science Foundation

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3