Affiliation:
1. Engineering Division, Colorado School of Mines, Golden, CO 80401
2. United Technologies Research Center, East Hartford, CT 06108
Abstract
This study examines the performance of a solid oxide fuel cell- (SOFC-) based integrated gasification power plant concept at the utility scale (>100 MW). The primary system concept evaluated was a pressurized ∼150 MW SOFC hybrid power system integrated with an entrained-flow, dry-fed, oxygen-blown, slagging coal gasifier and a combined cycle in the form of a gas turbine and an organic Rankine cycle (ORC) power generator. The analyzed concepts include carbon capture via oxy-combustion followed by water knockout and gas compression to pipeline-ready CO2 sequestration conditions. The results of the study indicate that hybrid SOFC systems could achieve electric efficiencies approaching 66% [lower heating value (LHV)] when operating fueled by coal-derived clean syngas and without carbon dioxide capture. The system concept integrates SOFCs with the low-pressure turbine spool of a 50 MW Pratt & Whitney FT8-3 TwinPak gas turbine set and a scaled-up, water-cooled 20 MW version of the Pratt & Whitney (P&W) PureCycle ORC product line (approximately 260 kW). It was also found that a system efficiency performance of about 48% (LHV) is obtained when the system includes entrained-flow gasifier and carbon capture using oxygen combustion. In order to integrate the P&W FT8 into the SOFC system, the high-pressure turbine spool is removed which substantially lowers the FT8 capital cost and increases the expected life of the gas turbine engine. The impact of integrating an ORC bottoming cycle was found to be significant and can add as much as 8 percentage points of efficiency to the system. For sake of comparison, the performance of a higher temperature P&W ORC power system was also investigated. Use of a steam power cycle, in lieu of an ORC, could increase net plant efficiency by another 4%, however, operating costs are potentially much lower with ORCs than steam power cycles. Additionally, the use of cathode gas recycle is strongly relevant to efficiency performance when integrating with bottoming cycles. A parameter sensitivity analysis of the system revealed that SOFC power density is strongly influenced by design cell voltage, fuel utilization, and amount of anode recycle. To maximize the power output of the modified FT8, SOFC fuel utilization should be lower than 70%. Cathode side design parameters, such as pressure drop and temperature rise were observed to only mildly affect efficiency and power density.
Subject
Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献