A New Boundary Integral Equation Formulation for Elastodynamic and Elastostatic Crack Analysis

Author:

Zhang Ch.1,Achenbach J. D.1

Affiliation:

1. The Technological Institute, Northwestern University, Evanston, IL 60208

Abstract

An elastodynamic conservation integral, the J˜k integral, is employed to derive boundary integral equations for crack configurations in a direct and natural way. These equations immediately have lower-order singularities than the ones obtained in the conventional manner by the use of the Betti-Rayleigh reciprocity relation. This is an important advantage for the development of numerical procedures for solving the BIE’s, and for an accurate calculation of the strains and stresses at internal points close to the crack faces. For curved cracks of arbitrary shape the BIE’s presented here have simple forms, and they do not require integration by parts, as in the conventional formulation. For the dynamic case the unknown quantities are the crack opening displacements and their derivatives (dislocation densities), while for the static case only the dislocation densities appear in the formulation. For plane cracks the boundary integral equations reduce to the ones obtained by other investigators.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic propagation of mode III cracks in a Lattice Boltzmann method for solids;Archive of Applied Mechanics;2022-11-07

2. Fictitious Absorption Method in a Dynamic Problem for a Layer Weakened by a Crack;Advanced Structured Materials;2022-11-01

3. Elastodynamic Problem Formulation;Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements;2016-09-24

4. Introduction;Seismic Wave Propagation in Non-Homogeneous Elastic Media by Boundary Elements;2016-09-24

5. Numerical Realization by BIEM;Dynamic Fracture of Piezoelectric Materials;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3