Affiliation:
1. School of Naval Architecture and Marine Engineering, National Technical University of Athens, 9 Heroon Polytechniou Avenue, Athens GR157-73, Greece
Abstract
The present work treats the bending vibration problem for vertical slender structures assuming clamped connections at the ends. The final goal is the solution of the associated eigenvalue problem for calculating the natural frequencies and the corresponding mode shapes. The mathematical formulation accounts for all physical properties that influence the bending vibration of the structure including the variation in tension. The resulting model incorporates all principal characteristics, such as the bending stiffness, the submerged weight, and the function of the static tension. The governing equation is treated using a perturbation approach. The application of this method results in the development of two boundary layer problems at the ends of the structure. These problems are treated properly using a boundary layer problem solution methodology in order to obtain asymptotic approximations to the shape of the vibrating riser-type structure. Here, the term “boundary layer” is used to indicate the narrow region across which the dependent variable undergoes very rapid changes. The boundary layers adjacent to the clamped ends are associated with the fact that the stiffness (which is small) is the constant factor multiplied by the highest derivative in the governing differential equation.
Subject
Mechanical Engineering,Ocean Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献