Solution of the Boundary Layer Problems for Calculating the Natural Modes of Riser-Type Slender Structures

Author:

Chatjigeorgiou Ioannis K.1

Affiliation:

1. School of Naval Architecture and Marine Engineering, National Technical University of Athens, 9 Heroon Polytechniou Avenue, Athens GR157-73, Greece

Abstract

The present work treats the bending vibration problem for vertical slender structures assuming clamped connections at the ends. The final goal is the solution of the associated eigenvalue problem for calculating the natural frequencies and the corresponding mode shapes. The mathematical formulation accounts for all physical properties that influence the bending vibration of the structure including the variation in tension. The resulting model incorporates all principal characteristics, such as the bending stiffness, the submerged weight, and the function of the static tension. The governing equation is treated using a perturbation approach. The application of this method results in the development of two boundary layer problems at the ends of the structure. These problems are treated properly using a boundary layer problem solution methodology in order to obtain asymptotic approximations to the shape of the vibrating riser-type structure. Here, the term “boundary layer” is used to indicate the narrow region across which the dependent variable undergoes very rapid changes. The boundary layers adjacent to the clamped ends are associated with the fact that the stiffness (which is small) is the constant factor multiplied by the highest derivative in the governing differential equation.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference7 articles.

1. An Investigation of the Nonlinear Transverse Vibrations of Parametrically Excited Vertical Marine Risers and Cables Under Tension;Chatjigeorgiou

2. Bounded and Unbounded Coupled Transverse Response of Parametrically Excited Vertical Marine Risers and Tensioned Cable Legs for Marine Applications;Chatjigeorgiou;Appl. Ocean. Res.

3. Stability Analysis of TLP Tethers;Chandrasekaran;Ocean Eng.

4. Natural Vibration Analysis of Tensioned Risers by Segmentation Method;Senjanović;Oil Gas Sci. Technol.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3