Affiliation:
1. Department of Material and Production, Aalborg University, Fibigerstraede 16, Aalborg East DK-9220, Denmark
Abstract
Abstract
Joint compressive forces have been identified as a risk factor for osteoarthritis disease progression. Therefore, unloader braces are a common treatment with the aim of relieving pain, but their effects are not clearly documented in the literature. A knee brace concept was tested with the aim of reducing joint loads and pain in knee osteoarthritis patients by applying an extension moment exclusively during the stance phase. The ideal effects were evaluated during gait based on musculoskeletal modeling of six patients, and experimental tests with a prototype brace were conducted on one patient. The effects were evaluated using electromyography measurements and musculoskeletal models to evaluate the muscle activation and knee compressive forces, respectively. The ideal brace simulations revealed a varying reduction of the first peak knee force between 3.5% and 33.8% across six patients whereas the second peak was unaffected. The prototype reduced the peak vasti muscle activation with 7.9% and musculoskeletal models showed a reduction of the first peak knee compressive force of up to 26.3%. However, the prototype brace increased the knee joint force impulse of up to 17.1% and no immediate pain reduction was observed. The reduction of the first peak knee compressive force, using a prototype on a single patient, indicates a promising effect from an applied knee extension moment for reducing knee joint loads during normal gait. However, further clinical experiments with this brace method are required to evaluate the long-term effects on both pain and disease progression in knee osteoarthritis patients.
Funder
Styrelsen for Forskning og Innovation
Subject
Physiology (medical),Biomedical Engineering