The Effect of Mechanical Fatigue on the Lifetimes of Membrane Electrode Assemblies

Author:

Pestrak Michael1,Li Yongqiang2,Case Scott W.2,Dillard David A.2,Ellis Michael W.3,Lai Yeh-Hung4,Gittleman Craig S.4

Affiliation:

1. Department of Macromolecular Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

2. Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

3. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

4. Fuel Cell Research Laboratories, GM R&D General Motors Corporation, 10 Carriage Street, Honeoye Falls, NY 14472

Abstract

Long-term durability of the membrane electrode assembly (MEA) in proton exchange membrane (PEM) fuel cells is one of the major technological barriers to the commercialization of fuel cell vehicles. The cracks in the electrode layers of the MEA, referred to as mud-cracks, are potential contributors to the failure in the PEM. To investigate how these mud-cracks affect the mechanical durability of the MEA, pressure-loaded blister tests are performed at 90°C to determine the biaxial fatigue strength of Gore-Primea® series 57 MEA. In these volume-controlled tests, leaking rate is determined as a function of fatigue cycles. The failure is defined to occur when the leaking rate exceeds a specified threshold. Postmortem characterization using bubble point testing and field emission scanning electron microscopy (FESEM) was conducted to provide visual documentation of leaking failure sites. The analysis of the experimental leaking data indicates that the MEA has much shorter lifetimes at the same nominal stress levels than membrane samples without the electrode layers. FESEM photomicrographs of leaking locations identified via the bubble point testing show cracks in the membrane that are concentrated within the mud-cracks of the electrode layer. These two pieces of information indicate that the mud-cracks within the electrode layers contribute to the leaking failures of the MEA assembly. For the fuel cell industry, this study suggests there is an opportunity to reduce the likelihood of membrane pinhole failures by reducing the size and occurrence of the mud-cracks formed during the MEA processing or by increasing the fatigue resistance (including the notch sensitivity) of the membrane material within the MEA.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3