Computational Study of the Effect of Governing Parameters on a Polymer Injection Molding Process for Single-Cavity and Multicavity Mold Systems

Author:

Tutar M.1,Karakus A.1

Affiliation:

1. Department of Mechanical Engineering, Mersin University, 33343 Çiftlikköy-Mersin, Turkey

Abstract

In the present study a more complete numerical solution approach using parallel computing technology is provided for the three-dimensional modeling of mold insert polymer injection molding process by considering the effects of phase-change and compressibility for non-Newtonian fluid flow conditions. A volume of fluid (VOF) method coupled with a finite volume approach is used to simulate the mold-filling stage of the injection molding process. The variations in viscosity and density in the polymer melt flow are successfully resolved in the present VOF method to more accurately represent the rheological behavior of the polymer melt flow during the mold filling. A comprehensive high-resolution differencing scheme (compressive interface capturing scheme for arbitrary meshes or CICSAM) is successfully utilized to capture moving interfaces and the pressure-implicit with splitting operators pressure-velocity coupling algorithm is employed to enable a higher degree of approximate relation between corrections for pressure and velocity. The capabilities of the proposed numerical methodology in modeling real molding flow conditions are verified through quantitative and qualitative comparisons with other simulation programs and the data obtained from the experimental study conducted. The present numerical results are also compared with each other for a polypropylene female threaded adaptor pipe fitting model with a metallic insert for varying governing process conditions/parameters to assess the modeling constraints and enhancements of the present numerical procedure and the effects of these conditions to optimize the polymer melt flow for mold insert polymer injection molding process. The numerical results suggest that the present numerical solution approach can be used with a confidence for further studies of optimization of design of mold insert polymer injection molding processes.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3