Experimental Robustness Analysis of Magneto-Rheological Tuned Vibration Absorbers Subject to Mass Off-Tuning

Author:

Koo Jeong-Hoi1,Ahmadian Mehdi2,Setareh Mehdi3

Affiliation:

1. Department of Mechanical and Manufacturing Engineering, Miami University, Oxford, OH 45056

2. Center for Vehicle Systems and Safety Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24061-0238

3. College of Architecture and Urban Studies, Virginia Tech, Blacksburg, VA 24060–0205

Abstract

This paper offers an experimental robustness analysis of a semi-active tuned vibration absorber (TVA) subject to structural mass off-tuning, which occurs frequently in practical applications of TVAs. One of the critical problems of a conventional TVA is off-tuning or miss-tuning because off-tuned TVAs may amplify the vibrations of the primary structure. This study intends to evaluate how well semi-active TVAs are able to adapt to structural mass changes (mass off-tuning) as compared with passive TVAs. To this end, a test apparatus was built to represent a two-degree-of-freedom structure model coupled with a TVA. The semi-active TVA considered in this study employed a magneto-rheological (MR) damper as its damping element to enhance overall performance. Using this test apparatus, a series of tests were conducted to identify the optimal tuning parameters of the TVAs. After obtaining each TVA’s optimal tuning parameters based on equal peak transmissibility criteria, the mass off-tuning tests were then performed on the optimally tuned TVAs. In order to off-tune the system, the mass of the primary structure varied from −19% to +19% of its nominal mass using a set of steel plates. Overall, the experimental results show that the semi-active MR TVA outperforms the passive TVA in reducing maximum vibrations. Moreover, the results show that the semi- active TVA is more robust to changes in the primary mass (mass off-tuning) The results further show that the semi-active MR TVA offers larger performance gains as the structure mass increases.

Publisher

ASME International

Subject

General Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3