Hydrostatic Ironing—Analysis and Experiments

Author:

Tirosh J.1,Iddan D.1,Silviano M.

Affiliation:

1. Technion, Haifa, Israel

Abstract

The classical ironing process by which walls of cups (or cans, etc.) are thinned is hereby replaced by a new fluid-pressure assisted process. This “hydrostatic ironing process” has the advantage of providing, under some restrictions, an unlimited amount of wall-thickness reduction. The analysis offered here is intended to explain why and how this can be achieved and to provide guidelines for designing such a process. Essentially, the analysis relates the governing variables of the process (geometrical variables, material variables, operating speed, and various friction parameters) with the applied fluid pressure via lower and upper bounds solutions. Based on these solutions, the technological advantages (and limitations) of this process are shown. Some generality is obtained by allowing the material to behave, not only as ideally perfect, but also as visco-plastic (to simulate warm temperature conditions) and as a power-law hardening material. The dynamic response to high speeds is predicted, showing that operating at high speeds is not recommended if the fluid pressure source is limited in its power. The two bounds of the solution, presented here, are relatively close to each other and coincide at small die angles. They provide, subsequently, a useful engineering tool for predetermining the operating fluid pressure for a given situation. The solutions match satisfactorily preliminary tests generated by a semi-industrial hydrostatic ironing machine with fluid pressure drive of 600 MPa. Presently, the process proves its capabilities by ironing wall-thickness of steel cups to 60 percent of its initial thickness, at relatively slow speeds (few centimeters per second).

Publisher

ASME International

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ironing force modeling analysis on aluminum cup using CATIA V5;AIP Conference Proceedings;2018

2. A Numerical and Experimental Study of Constrained Ironing Process as a Novel High Thickness Reduction Ironing Method;Transactions of the Indian Institute of Metals;2016-03-23

3. Improved seizure resistance of ultra-high-strength steel ironed cups with a lubricant containing SiO2 nanoparticles;The International Journal of Advanced Manufacturing Technology;2016-03-10

4. Analytical and experimental investigations on the novel hydro ironing process;The International Journal of Advanced Manufacturing Technology;2015-09-24

5. A Novel Ironing Process with Extra High Thickness Reduction: Constrained Ironing;Materials and Manufacturing Processes;2015-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3