CAE of Mold Cooling in Injection Molding Using a Three-Dimensional Numerical Simulation

Author:

Himasekhar K.1,Lottey J.1,Wang K. K.2

Affiliation:

1. Advanced CAE Technology, Inc., Warren Road Business Park, 31 Dutch Mill Road, Ithaca, NY 14850

2. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850

Abstract

In recent years, increased attention has been paid to the design of cooling systems in injection molding, as it became clear that cooling affects both productivity and part quality. In order to systematically improve the performance of a cooling system in terms of rapid, uniform, and even cooling, the designer needs a CAE analysis tool. For this, a computer simulation has been developed for three-dimensional mold heat transfer during the cooling stage of an injection molding process. In this simulation, mold heat transfer is considered as cyclic-steady, three-dimensional conduction; heat transfer within the melt region is treated as transient, one-dimensional conduction; heat exchange between the cooling channel surfaces and coolant is treated as steady, as is heat exchange with the ambient air and mold exterior surfaces. Numerical implementation includes the application of a hybrid scheme consisting of a modified three-dimensional, boundary-element method for the mold region and a finite-difference method with a variable mesh for the melt region. These two analyses are iteratively coupled so as to match the temperature and heat flux at the mold-melt interface. Using an example, the usefulness of the simulation developed here in the design of a cooling system for an injection molding process is amply demonstrated.

Publisher

ASME International

Subject

General Medicine

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3