A Closed Form Solution for Flow During the Vacuum Assisted Resin Transfer Molding Process

Author:

Hsiao K-T.1,Mathur R.1,Advani S. G.1,Gillespie, J. W.2,Fink B. K.3

Affiliation:

1. Department of Mechanical Engineering, Center for Composite Materials, University of Delaware, Newark, DE 19716

2. Department of Materials Science and Engineering, Department of Civil and Environmental Engineering, Center for Composite Materials, University of Delaware, Newark, DE 19716

3. Army Research Laboratory, Aberdeen Proving Grounds, MD 21005

Abstract

A closed form solution to the flow of resin in vacuum assisted resin transfer molding process (VARTM) has been derived. VARTM is used extensively for affordable manufacturing of large composite structures. During the VARTM process, a highly permeable distribution medium is incorporated into the preform as a surface layer. During infusion, the resin flows preferentially across the surface and simultaneously through the preform giving rise to a complex flow front. The analytical solution presented here provides insight into the scaling laws governing fill times and resin inlet placement as a function of the properties of the preform, distribution media and resin. The formulation assumes that the flow is fully developed and is divided into two regimes: a saturated region with no crossflow and a flow front region where the resin is infiltrating into the preform from the distribution medium. The flow front region moves with a uniform velocity. The law of conservation of mass and Darcy’s Law for flow through porous media are applied in each region. The resulting equations are nondimensionalized and are solved to yield the flow front shape and the development of the saturated region. It is found that the flow front is parabolic in shape and the length of the saturated region is proportional to the square root of the time elapsed. The results thus obtained are compared to data from full scale simulations and an error analysis of the solution was carried out. It was found that the time to fill is determined with a high degree of accuracy while the error in estimating the flow front length, d, increases with a dimensionless parameter ε=K2xxh22/K2yyd2. The solution allows greater insight into the process physics, enables parametric and optimization studies and can reduce the computational cost of full-scale 3-dimensional simulations. A parametric study is conducted to establish the sensitivity of flow front velocity to the distribution media/preform thickness ratio and permeabilities and preform porosity. The results provide insight into the scaling laws for manufacturing of large scale structures by VARTM. [S1087-1357(00)02002-5]

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3