Spatially Resolved Surface Heat Transfer for Parallel Rib Turbulators With 45 Deg Orientations Including Test Surface Conduction Analysis

Author:

Won S. Y.1,Burgess N. K.1,Peddicord S.1,Ligrani P. M.1

Affiliation:

1. Convective Heat Transfer Laboratory, Department of Mechanical Engineering, MEB 2110, University of Utah, Salt Lake City, UT 84112-9208, USA

Abstract

Spatially resolved Nusselt numbers, spatially-averaged Nusselt numbers, and friction factors are presented for a stationary channel with an aspect ratio of 4 and angled rib turbulators inclined at 45 deg with parallel orientations on two opposite surfaces. Results are given at different Reynolds numbers based on channel height from 9000 to 76,000. The ratio of rib height to hydraulic diameter is 0.078, the rib pitch-to-height ratio is 10, and the blockage provided by the ribs is 25 percent of the channel cross-sectional area. Nusselt numbers are determined with three-dimensional conduction considered within the acrylic test surface. Test surface conduction results in important variations of surface heat flux, which give decreased local Nusselt number ratios near corners, where each rib joins the flat part of the test surface, and along the central part of each rib top surface. However, even with test surface conduction included in the analysis, spatially-resolved local Nusselt numbers are highest on tops of the rib turbulators, with lower magnitudes on flat surfaces between the ribs, where regions of flow separation and shear layer re-attachment have pronounced influences on local surface heat transfer behavior. The augmented local and spatially averaged Nusselt number ratios (rib turbulator Nusselt numbers normalized by values measured in a smooth channel) decrease on the rib tops, and on the flat regions away from the ribs, especially at locations just downstream of the ribs, as Reynolds number increases. With conduction along and within the test surface considered, globally averaged Nusselt number ratios vary from 3.53 to 1.79 as Reynolds number increases from 9000 to 76,000. Corresponding thermal performance parameters also decrease as Reynolds number increases over this range.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3