Affiliation:
1. e-mail:
2. LEGI, Grenoble INP, BP 53, 38041 Grenoble Cedex 9, France
3. G2ELab, CNRS, Institut Polytechnique Grenoble and Joseph Fourier University, BP 166, 38042 Grenoble Cedex 9, France e-mail:
4. EDF R&D, 78401 Chatou, France e-mail:
Abstract
An original approach based on energy balance between vapor bubble collapse, emitted pressure wave, and neighboring solid wall response was proposed, developed, and tested to estimate the aggressiveness of cavitating flows. In the first part of the work, to improve a prediction method for cavitation erosion (Fortes-Patella and Reboud, 1998, “A New Approach to Evaluate the Cavitation Erosion Power,” ASME J. Fluids Eng., 120(2), pp. 335–344; Fortes-Patella and Reboud, 1998, “Energetical Approach and Impact Efficiency in Cavitation Erosion,” Proceedings of Third International Symposium on Cavitation, Grenoble, France), we were interested in studying the pressure waves emitted during bubble collapse. The radial dynamics of a spherical vapor/gas bubble in a compressible and viscous liquid was studied by means of Keller's and Fujikawa and Akamatsu's physical models (Prosperetti, 1994, “Bubbles Dynamics: Some Things we did not Know 10 Years Ago,” Bubble Dynamics and Interface Phenomena, Blake, Boulton-Stone, Thomas, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, pp. 3–15; Fujikawa and Akamatsu, 1980, “Effects of Non-Equilibrium Condensation of Vapor on the Pressure Wave Produced by Collapse of a Bubble in Liquid,” J. Fluid Mech., 97(3), pp. 481–512). The pressure amplitude, the profile, and the energy of the pressure waves emitted during cavity collapses were evaluated by numerical simulations. The model was validated by comparisons with experiments carried out at Laboratoire Laser, Plasma et Procédés Photoniques (LP3-IRPHE) (Marseille, France) with laser-induced bubble (Isselin et al., 1998, “Investigations of Material Damages Induced by an Isolated Vapor Bubble Created by Pulsed Laser,” Proceedings of Third International Symposium on Cavitation, Grenoble, France; Isselin et al., 1998, “On Laser Induced Single Bubble Near a Solid Boundary: Contribution to the Understanding of Erosion Phenomena,” J. Appl. Phys., 84(10), pp. 5766–5771). The efficiency of the first collapse ηwave/bubble (defined as the ratio between pressure wave energy and initial bubble potential energy) was evaluated for different bubble collapses. For the cases considered of collapse in a constant-pressure field, the study pointed out the strong influence of the air contents on the bubble dynamics, on the emitted pressure wave characteristics, and on the collapse efficiency. In the second part of the study, the dynamic response and the surface deformation (i.e., pit profile and pit volume) of various materials exposed to pressure wave impacts was simulated making use of a 2D axisymmetric numerical code simulating the interaction between pressure wave and an elastoplastic solid. Making use of numerical results, a new parameter β (defined as the ratio between the pressure wave energy and the generated pit volume) was introduced and evaluated for three materials (aluminum, copper, and stainless steel). By associating numerical simulations and experimental results concerning pitted samples exposed to cavitating flows (volume damage rate), the pressure wave power density and the flow aggressiveness potential power were introduced. These physical properties of the flow characterize the cavitation intensity and can be related to the flow hydrodynamic conditions. Associated to β and ηwave/bubble parameters, these power densities appeared to be useful tools to predict the cavitation erosion power.