The Effect of Orientation on the Performance of Small Free-Convection Heat Sinks for Use With a Thermoelectric Cryotherapy Device

Author:

Baldry Mark1,Timchenko Victoria2,Menictas Chris2

Affiliation:

1. School of Physics and School of Biomedical Engineering, University of Sydney, Sydney 2006, NSW, Australia

2. School of Mechanical and Manufacturing Engineering, UNSW Sydney, Sydney 2052, NSW, Australia

Abstract

Abstract The rapid development of metal 3D printing techniques has enabled the exploration of complex free-convection heat sink designs. Small free-convection heat sinks with pin-fin arrays (or novel geometries) are widely employed at different orientations in a variety of electronic devices, yet there is limited understanding of how orientation impacts their heat transfer behavior. This article characterizes the orientation-dependent performance of a small, tapered pin, free-convection heat sink (named HS17) manufactured with direct metal laser sintering for use with a thermoelectric scalp cryotherapy device for the prevention of chemotherapy-induced alopecia. A validated numerical model and custom-built free-convection test rig were used to investigate the heat sink’s performance over the orientation range of 0 deg to 135 deg. HS17 maintained relatively robust performance over the 0 deg to 90 deg range; however, the thermal resistance (Rth) at 112.5 deg and 135 deg was 6% and 11% higher compared to the 90 deg case, respectively. The heat sink design was modified to include a 22.5 deg wedge base (named HS17-W) to mitigate this performance decline, which is important to ensure safe and continued operation of the cryotherapy device. Compared to the flat base heat sink, the wedge-base design successfully reduced Rth from 11.9 K/W, 12.5 K/W, and 12.8 K/W to 11.5 K/W, 11.8 K/W, and 12.3 K/W at 90 deg, 112.5 deg, and 135 deg, respectively. These results demonstrate the effectiveness of the current proposed design to improve the performance of free-convection heat sinks at downward-facing orientations.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3