The Research on the Interception Engineering Layout of Active Intercepting and Guiding in Water Intake Open Channel of Nuclear Power Plant

Author:

Yang Jia1,Cao Ranran1,Bai Wei1

Affiliation:

1. China Nuclear Power Engineering Co., Ltd. , Beijing, China (Mainland)

Abstract

Abstract At present, most intercepting facilities in water intake open channel of nuclear power plant are passive. Moreover, the correlation between the layout of intercepting facilities and hydraulic conditions of water intake open channel is not considered. Hence, the layout of intercepting facilities is unreasonable. The cooling water intake system of nuclear power plants faces risks. In this paper, The flow field characteristics of water intake open channel under typical sea hydrologic conditions were studied. Then, the migration path and aggregation rule of floating or suspended objects are simulated along with the flow. The blockages-removal effect of floats and marine organisms are studied after different intercepting engineering measures are carried out in water intake open channel. The technical route combining mathematical model and physical model test is adopted. Finally, the principle and scheme of the interception engineering layout of active intercepting and guiding are proposed. The optimized interception engineering layout can effectively guide suspended or floating blockages to the outside of water intake, or guide blockages in water intake open channel to the area without disaster risks, where the blockages are also easy to be salvaged. It can significantly reduce the large quantity of blockages into the cooling water intake system, which will also reduce the blockage loads for all intercepting facilities. Thereby, the defense capability of nuclear power plant cold source system against potential water intake blockages is greatly improved.

Publisher

American Society of Mechanical Engineers

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3