Periodic Impulsive Fault Feature Extraction of Rotating Machinery Using Dual-Tree Rational Dilation Complex Wavelet Transform

Author:

Zhang ChunLin1,Li Bing1,Chen BinQiang2,Cao HongRui1,Zi YanYang1,He ZhengJia1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China e-mail:

2. School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China e-mail:

Abstract

Fault diagnosis of rotating machinery is very important to guarantee the safety of manufacturing. Periodic impulsive fault features commonly appear in vibration measurements when local defects occur in the key components like rolling bearings and gearboxes. To extract the periodic impulses embedded in strong background noise, wavelet transform (WT) is suitable and has been widely used in analyzing these nonstationary signals. However, a few limitations like shift-variance and fixed frequency partition manner of the dyadic WT would weaken its effectiveness in engineering application. Compared with dyadic WT, the dual-tree rational dilation complex wavelet transform (DT-RADWT) enjoys attractive properties of better shift-invariance, flexible time-frequency (TF) partition manner, and tunable oscillatory nature of the bases. In this article, an impulsive fault features extraction technique based on the DT-RADWT is proposed. In the routine of the proposed method, the optimal DT-RADWT basis is constructed dynamically and adaptively based on the input signal. Additionally, the sensitive wavelet subband is chosen using kurtosis maximization principle to reveal the potential weak fault features. The proposed method is applied on engineering applications for defects detection of the rolling bearing and gearbox. The results show that the proposed method performs better in extracting the fault features than dyadic WT and empirical mode decomposition (EMD), especially when the incipient fault features are embedded in the frequency transition bands of the dyadic WT.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3