A Validation Methodology for a Combined Heating Cooling and Power (CHCP) Pilot Plant

Author:

Cardona E.1,Piacentino A.1

Affiliation:

1. Department of Energetic and Environmental Researches, Faculty of Engineering, Universita` di Palermo, Viale delle Scienze, 90128 Palermo, Sicily, Italy

Abstract

A great number of variables significantly influence the energetic, environmental and economic results of CHP (Combined Heating and Power) and CHCP (Combined Heating Cooling and Power) plants operation, and as a consequence their project activity is rather complex. In order to select the best layout and properly size the machines, detailed data on hourly electric, thermal, and cooling demand are necessary, so that a series of plant life cycle simulations may have to be carried out. Unfortunately, such detailed data are rarely available, because energy consumptions data for existing buildings are usually derived from aggregated monthly or bimonthly gas and electricity bills. Even more difficulties are encountered for new types of buildings, for which no consumptions data are available. In such cases, the most common procedure consists in performing, using case-oriented criteria, an estimate of the thermal and cooling consumption levels, and to refine it during construction, if necessary. This is the case of an existing medium size CHCP pilot plant for office buildings that covers the electrical, thermal, and cooling loads of two office buildings situated in a Mediterranean area (Palermo, Sicily, Italy). Estimated demand profiles were used; the effect on thermal demand of the conversion of the cooling load into thermal one through an absorption chiller was assessed. This is a very significant aspect in all warm climates zones. Cumulative curves were obtained for the aggregate thermal demand, by summing the heat direct applications and the heat consumptions for feeding the absorption chiller. In this paper the existing plant was compared with other plant configurations, varying both for machine sizes and management criterion, in order to affirm whether or not the plant selected by the designer in a simplified manner was or not an appropriate solution. The comparison was performed from an energetic and economic viewpoint.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3