Impact Dynamics of a Supercavitating Underwater Projectile

Author:

Rand Richard1,Pratap Rudra2,Ramani Deepak1,Cipolla Jeffery3,Kirschner Ivan3

Affiliation:

1. Cornell University

2. Indian Institute of Science

3. Naval Underwater Weapons Center

Abstract

Abstract We investigate the in-flight dynamics of a simplified model of a supercavitating body. In particular we are interested in the nature and frequency of the impacts which occur as the tail of the body touches the cavity walls. Referring to laboratory experiments conducted at Cal Tech in the 1950’s, we show that the tip force by the fluid is approximately directed along the length of the body. This gives zero moment about the body’s center of mass which leads us to assume that the body moves as if it were a moment-free rigid body pinned at its tip. To simplify the analysis, we assume that the body is not spinning about its symmetry axis. Then the motion between impacts is a plane motion with constant angular velocity. Using elementary fluid mechanics, we model the impact occurring when the tail touches the cavity walls, and we show that it is reasonable to assume that the impact is instantaneous with coefficient of restitution unity. Using this simplified model, we offer a simulation for typical parameters.

Publisher

American Society of Mechanical Engineers

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3