Characterization of Puncture Forces of the Human Trachea and Cricothyroid Membrane

Author:

DeSchmidt Aleah M.1,Gong Alex T.2,Batista Joaquin E.3,Song Agnes Y.1,Bidinger Sophia L.4,Schul Alyssa L.5,Wang Everet Y.2,Norfleet Jack E.6,Sweet Robert M.7

Affiliation:

1. Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000; Department of Bioengineering, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000

2. Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000

3. Biorez Inc., 470 James St. #14, New Haven, CT 06513

4. Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK

5. Philips Healthcare, 22100 Bothell Everett Hwy, Bothell, WA 98021

6. Medical Simulation Research Branch Simulation and Training Technology Center, U.S. Army CCDC Soldier Center, 12423 Research Parkway, Orlando, FL 32826

7. Department of Surgery, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000; Department of Urology, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000;Department of Bioengineering, University of Washington, 1959 NE Pacific Ave Magnuson Health Sciences T293, Seattle, WA 98195-0000

Abstract

Abstract Accurate human tissue biomechanical data represents a critical knowledge gap that will help facilitate the advancement of new medical devices, patient-specific predictive models, and training simulators. Tissues related to the human airway are a top priority, as airway medical procedures are common and critical. Placement of a surgical airway, though less common, is often done in an emergent (cricothyrotomy) or urgent (tracheotomy) fashion. This study is the first to report relevant puncture force data for the human cricothyroid membrane and tracheal annular ligaments. Puncture forces of the cricothyroid membrane and tracheal annular ligaments were collected from 39 and 42 excised human donor tracheas, respectively, with a mechanized load frame holding various surgical tools. The average puncture force of the cricothyroid membrane using an 11 blade scalpel was 1.01 ± 0.36 N, and the average puncture force of the tracheal annular ligaments using a 16 gauge needle was 0.98 ± 0.34 N. This data can be used to inform medical device and airway training simulator development as puncture data of these anatomies has not been previously reported.

Funder

U.S. Department of Defense

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3