Thermosyphon Models for Downhole Heat Exchanger Applications in Shallow Geothermal Systems

Author:

Kreitlow D. B.1,Reistad G. M.1,Miles C. R.1,Culver G. G.2

Affiliation:

1. Department of Mechanical Engineering, Oregon State University, Corvallis, Oregon

2. Department of Mechanical Engineering Technology, Oregon Institute of Technology, Klamath Falls, Oregon

Abstract

The analysis of downhole heat exchangers used to extract energy from relatively shallow geothermal wells leads to the consideration of several interesting problems of buoyancy-driven heat transfer in enclosures. This paper considers thermosyphoning through and around the wellbore casing which is perforated at two or more depths. Analytical models are developed for thermosyphoning in the cased well both with and without a heat exchanger installed. Theoretical results are compared with experimental values. These comparisons show that the observed energy extraction rates and flow rates through the well casing are possible with thermosyphoning as the only circulation mechanism within the well bore. The model with a heat exchanger installed is parametrically evaluated to illustrate the sensitivity of the model to estimated parameters and the effect of changes in design variables or constraints.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3