A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine

Author:

Zhang Yu1,Voice Alexander1,Pei Yuanjiang1,Traver Michael1,Cleary David1

Affiliation:

1. Aramco Services Company, Aramco Research Center, Detroit, 46535 Peary Ct., Novi, MI 48377 e-mail:

Abstract

Gasoline compression ignition (GCI) offers the potential to reduce criteria pollutants while achieving high fuel efficiency. This study aims to investigate the fuel chemical and physical properties effects on GCI operation in a heavy-duty diesel engine through closed-cycle, three-dimensional (3D) computational fluid dynamic (CFD) combustion simulations, investigating both mixing-controlled combustion (MCC) at 18.9 compression ratio (CR) and partially premixed combustion (PPC) at 17.3 CR. For this work, fuel chemical properties were studied in terms of the primary reference fuel (PRF) number (0–91) and the octane sensitivity (0–6) while using a fixed fuel physical surrogate. For the fuel physical properties effects investigation, six physical properties were individually perturbed, varying from the gasoline to the diesel range. Combustion simulations were carried out at 1375 RPM and 10 bar brake specific mean pressure (BMEP). Reducing fuel reactivity was found to influence ignition delay time (IDT) more significantly for PPC than for MCC. 0D IDT calculations suggested that the fuel reactivity impact on IDT diminished with an increase in temperature. Moreover, higher reactivity gasolines exhibited stronger negative coefficient (NTC) behavior and their IDTs showed less sensitivity to temperature change. In addition, increasing octane sensitivity was observed to result in higher fuel reactivity and shorter IDT. Under both MCC and PPC, all six physical properties showed little impact on global combustion behavior, NOx, and fuel efficiency. Among the physical properties investigated, only density showed a notable effect on soot emissions. Increasing density led to higher soot due to deteriorated air entrainment into the spray and the slower fuel-air mixing process.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3