Radiative Transfer in Dispersed Media: Comparison Between Homogeneous Phase and Multiphase Approaches

Author:

Randrianalisoa Jaona1,Baillis Dominique1

Affiliation:

1. CETHIL UMR5008, CNRS, INSA-Lyon, Université Lyon 1, F-69621 Villeurbanne, France

Abstract

The radiative transfer in dispersed media in the geometric optic regime is investigated through two continuum-based approaches. The first one is the traditional treatment of dispersed media as continuous and homogeneous systems, referred here as the homogeneous phase approach (HPA). The second approach is based on a separate treatment of the radiative transfer in the continuous and dispersed phases, referred here as the multiphase approach (MPA). The effective radiative properties involved in the framework of the HPA are determined using the recent ray-tracing (RT) method, enabled to overcome the modeling difficulties such as the dependent scattering effects and the misunderstanding of the effective absorption coefficient. The two modeling approaches are compared with the direct Monte Carlo simulation. It is shown that (i) the HPA combined with effective radiative properties, such as those from the RT method, is satisfactory in analyzing the radiative transfer in dispersed media constituting of transparent, semitransparent, or opaque particles. Therefore, the use of more complex continuum models such as the dependence included discrete ordinate method (Singh, B. P., and Kaviany, M., 1992, “Modelling Radiative Heat Transfer in Packed Beds,” Int. J. Heat Mass Transfer, 35, pp. 1397–1405) is not imperative anymore. (ii) The MPA, though a possible candidate to handle nonequilibrium problems, is suitable if the particle (geometric) backscattering is weak or absent. It is the case, for example, for dispersed media constituted of opaque particles or air bubbles. However, caution should be taken with the MPA when dealing with the radiative transfer in dispersed media constituted of nonopaque particles having refractive indexes greater than that of the continuous host medium.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3