Viscoelastic Functionally Graded Materials Subjected to Antiplane Shear Fracture

Author:

Paulino G. H.,Jin Z.-H.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Newmark Laboratory, 205 North Mathews Avenue, Urbana, IL 61801

Abstract

In this paper, a crack in a strip of a viscoelastic functionally graded material is studied under antiplane shear conditions. The shear relaxation function of the material is assumed as μ=μ0 expβy/hft, where h is a length scale and f(t) is a nondimensional function of time t having either the form ft=μ∞/μ0+1−μ∞/μ0exp−t/t0 for a linear standard solid, or ft=t0/tq for a power-law material model. We also consider the shear relaxation function μ=μ0 expβy/h[t0 expδy/h/t]q in which the relaxation time depends on the Cartesian coordinate y exponentially. Thus this latter model represents a power-law material with position-dependent relaxation time. In the above expressions, the parameters β, μ0,μ∞,t0; δ, q are material constants. An elastic crack problem is first solved and the correspondence principle (revisited) is used to obtain stress intensity factors for the viscoelastic functionally graded material. Formulas for stress intensity factors and crack displacement profiles are derived. Results for these quantities are discussed considering various material models and loading conditions.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3