Photothermal Response of Tissue Phantoms Containing Multi-Walled Carbon Nanotubes

Author:

Sarkar Saugata1,Fisher Jessica2,Rylander Christopher3,Rylander Marissa Nichole3

Affiliation:

1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, ICTAS Building, Stanger Street, MC0298, Blacksburg, VA 24061

2. School of Biomedical Engineering and Sciences (SBES), Virginia Polytechnic Institute and State University, ICTAS Building, Stanger Street, MC0298, Blacksburg, VA 24061

3. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, ICTAS Building, Stanger Street, MC0298, Blacksburg, VA 24061; School of Biomedical Engineering and Sciences (SBES), Virginia Polytechnic Institute and State University, ICTAS Building, Stanger Street, MC0298, Blacksburg, VA 24061

Abstract

Inclusion of multi-walled carbon nanotubes (MWNTs) into tissue prior to laser therapy has the potential to enhance the selectivity and effectiveness of cancer therapy by providing greater and more controlled thermal deposition. The purpose of this study was to investigate the optical and thermal response of tissue representative phantoms containing MWNTs to optical radiation. Tissue representative phantoms 20 mm in diameter and 1 mm in thickness were created from sodium alginate. Following the inclusion of MWNTs (900 nm in length, 40–60 nm in diameter) in phantoms, the distribution of MWNTs was observed using transmission electron microscopy. A predominantly, evenly dispersed and randomly oriented distribution of MWNTs was observed with a rare presence of MWNT clustering or clumping. In order to characterize the response of MWNT inclusion on optical properties of phantoms, the transmittance and reflectance spectra of phantoms with and without MWNT inclusion were measured with a spectrophotometer over a wavelength range of 200–1400 nm. Inclusion of MWNTs in phantoms dramatically enhanced light absorption across the entire wavelength range as evidenced by a diminished transmittance and reflectance compared with phantoms without MWNTs. In order to evaluate the spatiotemporal temperature distribution associated with laser irradiation of phantoms with and without MWNTs, the temperature was measured at discrete radial distances from the center of the incident laser beam using thermocouples. The rate of temperature increase and peak temperature for phantoms containing MWNTs was much greater compared with phantoms without MWNTs at all measurement locations. In conclusion, MWNT inclusion in tissue phantoms increases the optical absorption and temperature elevation, which may enable more effective photothermal therapies of human disease utilizing lasers.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3