Bond Graph Modeling of a Two-Stage Pressure Relief Valve

Author:

Gad Osama1

Affiliation:

1. Mechanical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait e-mail:

Abstract

This study examined the use of bond graphs for the modeling and simulation of a fluid power system component. A new method is presented for creating the bond graph model, based upon a previously developed mathematical model. A nonlinear dynamic bond graph model for a two-stage pressure relief valve has been developed in this paper. Bond graph submodels were constructed considering each element of the studied valve assembly. The overall bond graph model of the valve was developed by combining these submodels using junction structures. Causality was then assigned in order to obtain a computational model, which could be simulated. The simulation results of the causal bond graph model were compared with those of a mathematical model, which had been also developed in this paper based on the same assumptions. The results were found to correlate very well both in the shape of the curves, magnitude, and response times. The causal bond graph model was verified experimentally in the dynamic mode of operation. As a result of comparison, bond graphs can quickly and accurately model the dynamics in a fluid power control system component. During the simulation study, it was found that nonlinearity occur due to three factors: changes in pressure, which cause nonlinear velocity changes of the flow rate; changes in the throttling area of the valve restriction, which usually changes nonlinearly; and changes in the discharge coefficient of the throttling area of the valve restriction, which does not remain constant.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference16 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3