Predictive Model Development and Validation for Raised Floor Plenum Data Center

Author:

Fulpagare Yogesh1,Bhargav Atul1,Joshi Yogendra2

Affiliation:

1. Energy Systems Research Laboratory, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, GJ 382355, India

2. Consortium for Energy Efficient Thermal Management (CEETHERM) Laboratory, G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

Abstract

AbstractWith the explosion in digital traffic, the number of data centers as well as demands on each data center, continue to increase. Concomitantly, the cost (and environmental impact) of energy expended in the thermal management of these data centers is of concern to operators in particular, and society in general. In the absence of physics-based control algorithms, computer room air conditioning (CRAC) units are typically operated through conservatively predetermined set points, resulting in suboptimal energy consumption. For a more optimal control algorithm, predictive capabilities are needed. In this paper, we develop a data-informed, experimentally validated and computationally inexpensive system level predictive tool that can forecast data center behavior for a broad range of operating conditions. We have tested this model on experiments as well as on (experimentally) validated transient computational fluid dynamics (CFD) simulations for two different data center design configurations. The validated model can accurately forecast temperatures and air flows in a data center (including the rack air temperatures) for 10–15 min into the future. Once integrated with control aspects, we expect that this model can form an important building block in a future intelligent, increasingly automated data center environment management systems.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. Extreme Heat Causes Internet Blackout in Australia,2017

2. Overheating Brings Down Microsoft Data Center,2013

3. Wikipedia's Data Center Overheats,2010

4. Advances in Data Center Thermal Management;Renewable Sustainable Energy Rev.,2015

5. An Accurate Fast Fluid Dynamics Model for Data Center Applications,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3