Affiliation:
1. Department of Mechanical Engineering, Columbia University, New York, NY 10027
2. Department of Electrical Engineering, Columbia University, New York, NY 10027
Abstract
Bimaterial atomic force microscope cantilevers have been used extensively over the last 15 years as physical, chemical, and biological sensors. As a thermal sensor, the static deflection of bimaterial cantilevers, due to the mismatch of the coefficient of thermal expansion between the two materials, has been used to measure temperature changes as small as 10−6 K, heat transfer rate as small as 40 pW, and energy changes as small as 10 fJ. Bimaterial cantilevers have also been used to measure “heat transfer-distance” curves—a heat transfer analogy of the force-distance curves obtained using atomic force microscopes. In this work, we concentrate on the characterization of heat transfer from the microcantilever. The thermomechanical response of a bimaterial cantilever is used to determine the (1) thermal conductance of a bimaterial cantilever, and (2) overall thermal conductance from the cantilever to the ambient. The thermal conductance of a rectangular gold coated silicon nitride cantilever is Gc=4.09±0.04 μW K−1. The overall thermal conductance from the cantilever to the ambient (at atmospheric pressure) is Ga=55.05±0.69 μW K−1. The effective heat transfer coefficient from the cantilever to the ambient (at atmospheric pressure) is determined to be ≈3400 W m−2 K−1.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献