A Natural Circulation Model of the Closed Loop, Two-Phase Thermosyphon for Electronics Cooling

Author:

Haider S. I.1,Joshi Yogendra K.1,Nakayama Wataru2

Affiliation:

1. G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332

2. Therm Tech International, 920-7 Higashi Koiso, Oh-Iso Machi, Kanagawa 255-0004, Japan

Abstract

This study presents a model for the two-phase flow and heat transfer in the closed loop, two-phase thermosyphon (CLTPT) involving co-current natural circulation. The focus is on CLTPTs for electronics cooling that exhibit complex two-phase flow patterns due to the closed loop geometry and small tube size. The present model is based on mass, momentum, and energy balances in the evaporator, rising tube, condenser, and the falling tube. The homogeneous two-phase flow model is used to evaluate the friction pressure drop of the two-phase flow imposed by the available gravitational head through the loop. The saturation temperature dictates both the heat source (chip) temperature and the condenser heat rejection capacity. Thermodynamic constraints are applied to model the saturation temperature, which also depends upon the local heat transfer coefficient and the two-phase flow patterns inside the condenser. The boiling characteristics of the enhanced structure are used to predict the chip temperature. The model is compared with experimental data for dielectric working fluid PF-5060 and is in general agreement with the observed trends. The degradation of condensation heat transfer coefficient due to diminished vapor convective effects, and the presence of subcooled liquid in the condenser are expected to cause higher thermal resistance at low heat fluxes. The local condensation heat transfer coefficient is a major area of uncertainty.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3