On the Selection of Sensitivity Analysis Methods in the Context of Tolerance Management

Author:

Heling Björn1,Oberleiter Thomas2,Schleich Benjamin3,Willner Kai2,Wartzack Sandro3

Affiliation:

1. Department of Mechanical Engineering, Institute of Engineering Design, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany e-mail:

2. Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany

3. Department of Mechanical Engineering, Institute of Engineering Design, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen 91058, Germany

Abstract

Although mass production parts look the same at first sight, every manufactured part is unique, at least on a closer inspection. The reason for this is that every manufactured part is inevitable subjected to different scattering influencing factors and variation in the manufacturing process, such as varying temperatures or tool wear. Products, which are built from these deviation-afflicted parts, consequently show deviations from their ideal properties. To ensure that every single product nevertheless meets its technical requirements, it is necessary to specify the permitted deviations. Furthermore, it is crucial to estimate the consequences of the permitted deviations, which is done via tolerance analysis. During this process, the imperfect parts are assembled virtually and the effects of the geometric deviations can be calculated. Since the tolerance analysis enables engineers to identify weak points in an early design stage, it is important to know which contribution every single tolerance has on a certain quality-relevant characteristic to restrict or increase the correct tolerances. In this paper, four different methods to calculate the sensitivity are introduced and compared. Based on the comparison, guidelines are derived which are intended to facilitate a selection of these different methods. In particular, a newly developed approach, which is based on fuzzy arithmetic, is compared to the established high–low–median method, a variance-based method, and a density-based approach. Since all these methods are based on different assumptions, their advantages and disadvantages are critically discussed based on two case studies.

Publisher

ASME International

Subject

Computational Theory and Mathematics,Computer Science Applications,Modelling and Simulation,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3