An Experimental Study of Passive and Active Heat Transfer Enhancement in Microchannels

Author:

Wang Yingying,Peles Yoav1

Affiliation:

1. e-mail:  Mechanical, Aerospace, and Nuclear Engineering (MANE), Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract

An experimental study on single-phase heat transfer and fluid flow downstream a single microscale pillar in a microchannel was conducted. A secondary jet flow was issued from slits formed along the pillar. A comparison of the thermal performances of a plain microchannel, a microchannel with a pillar, and a microchannel with a jet issued from a pillar was performed to elucidate the merits of this heat transfer enhancement technique. It was found that the presence of a pillar upstream the heater enhanced the heat transfer; the addition of jet flow issued from a pillar further enhanced the heat transfer. At a Reynolds number of 730, an improvement of spatially averaged Nusselt number of 80% was achieved due to the combined effect of the pillar and the jet compared with the corresponding plain channel. Micro particle image velocimetry (μPIV) measurements provided planar velocity fields at two planes along the channel height, and allowed flow structure visualization. Turbulent kinetic energy (TKE) was used to measure flow mixing and to quantify the hydrodynamic effect of the jet. It was shown that the TKE is closely related to the Nusselt number.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3