Intensification of Chemically Assisted Melt–Water Explosive Interactions

Author:

Sansone Anthony A.1,Taleyarkhan Rusi P.1

Affiliation:

1. School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 e-mail:

Abstract

This paper investigates avenues for controlled initiation and augmentation of the mechanical and thermal energetic output of shock-triggered vapor explosions (VEs) with Al–GaInSn alloys; furthermore, enabling a means for impulsive hydrogen gas generation within milliseconds. Using a submerged electronic bridgewire detonator or rifle primer caps as the shock trigger for VE initiation, experiments were conducted with 10 g melt drops at initial temperature between 930 K and 1100 K, aluminum mass contents between 0.3 wt.% and 20 wt.%, and water temperatures between 293 K and 313 K. It was found that combined thermal–chemical Al–GaInSn–H2O explosive interactions can readily be controllably induced via shocks and are of greater intensity than the pure (spontaneous) thermally driven explosions observed with unalloyed Sn and GaInSn. Shock pressures up to 5 MPa were recorded about 10 cm from the explosion zone; a factor of 5 higher than the ∼1 MPa over pressures generated from spontaneous GaInSn–H2O explosions reported in our previous study. Al–GaInSn–H2O explosive interactions also exhibited rapid enhancements to the “impulse” H2 production rate. Hydrogen/vapor bubble volumes up to 460 ml were observed approximately 4 ms after the explosion, equating to a mechanical work and instantaneous power output of 47 J and 11.75 kW, respectively. In comparison with available, analogous, triggered-explosion studies with Al melt drops, our Al–GaInSn alloy melt at 1073 K generated up to 18 times (∼2000%) more hydrogen per gram of aluminum when compared with experiments with molten Al at a much higher melt temperature of 1243 K.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference23 articles.

1. Reactor Safety Study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants,1975

2. Vapor Explosion Studies for Nuclear and Non-Nuclear Industries;Nucl. Eng. Des.,2005

3. A Summary of Findings From Twenty Years of Molten Metal Incident Reporting,2005

4. Alfadala, H., Reklaitis, G., and El-Halwagi, M., 2009, “Nuclear Technology for Frontier Advances in the Natural Gas Industry,” 1st Annual Gas Processing Symposium, H.Alfadala, G.Reklaitis, and M.El-Halwagi, eds., Advances in Gas Processing, Elsevier, Amsterdam, The Netherlands, pp. 162–170.

5. Rapid Phase Transitions From Liquid to Vapor,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3