A Relative Equilibrium Decision Approach for Concept Design Through Fuzzy Cooperative Game Theory

Author:

Jing Liting1,Li Zhi1,Peng Xiang1,Li Jiquan1,Jiang Shaofei1

Affiliation:

1. Key Laboratory of Special Equipment Manufacturing and Advanced Process Technology, Zhejiang University of Technology, Ministry of Education, Hangzhou 310014, China e-mail:

Abstract

In the early stages of the product design, multiple principle solutions are obtained through function solving, and a large number of conceptual schemes are generated by combination. Therefore, scheme decisions are important factors in the concept design. The existing decision methods primarily focus on the satisfaction of economic needs, and the impact of technical indicators on the technical performance of the scheme, while ignoring the conflict of needs between the two subject objectives in the decision process. Actual decisions need to be weighed against each other’s expectations. In addition, the qualitative interactive objectives will affect the decision direction of the conceptual scheme. Herein, we propose a relative equilibrium decision approach for concept design based on the fuzzy decision-making trial and evaluation laboratory-cooperative game model. This model is primarily divided into two parts. One is to solve the impact relationship between the objectives, and the objectives’ weights are obtained through fuzzy decision-making trial and evaluation laboratory (FDEMATEL). The second is to incorporate the objectives’ weights and impact utility into the cooperative game model, to reasonably weigh the relative interests of the two subjects to meet the corresponding interactions, and to obtain the scheme with the largest overall design desirability. Finally, the case study proves that this decision model can identify the optimal scheme. This model is proven to be robust by comparison with other methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3