A Sequential Approach for Robust Multidisciplinary Design Optimization Under Mixed Interval and Probabilistic Uncertainties

Author:

Xia Tingting1,Li Mian2

Affiliation:

1. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China

2. University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China e-mail:

Abstract

Uncertainties cannot be ignored in the design process of complex multidisciplinary systems. Robust multidisciplinary design optimization methods (RMDOs) can treat uncertainties as specified probabilistic distributions when enough statistical information is available while they assign intervals for nondeterministic variables since designers may not have enough information to obtain statistical distributions, especially in the early stage of design optimization processes. Both types of uncertainties are very likely to appear simultaneously. In order to obtain solutions to RMDO problems under mixed interval and probabilistic uncertainties, this work proposed a new sequential RMDO approach, mixed SR-MDO. First, the robust optimization (RO) problem in a single discipline under mixed uncertainties is formulated and solved. Then, following the SR-MDO framework from the previous work, MDO problems under mixed uncertainties are solved by handling probabilistic and interval uncertainties sequentially in decomposed subsystem problems. Interval uncertainties are handled by using the worst-case sensitivity analysis, and the influence of probabilistic uncertainties in objectives, constraints, as well as in discipline analysis models is characterized by corresponding mean and variance. The applied SR-MDO framework allows subsystems in its full autonomy RO and sequential RO stages to run independently in parallel. This makes mixed SR-MDO be efficient for independent disciplines to work simultaneously and be more time-saving. Computational complexity of the proposed approach mainly relates to the double-loop optimization process in the worst-case interval uncertainties analysis. Examples are presented to demonstrate the applicability and efficiency of the mixed SR-MDO approach.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Mechanical Engineering,Safety Research,Safety, Risk, Reliability and Quality

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3