Heat Transfer and Film Cooling of Blade Tips and Endwalls

Author:

Naik S.1,Georgakis C.2,Hofer T.3,Lengani D.3

Affiliation:

1. Alstom Power, 5401 Baden, Switzerland

2. Alstom Power, Rugby CV21 2NH, UK

3. von Kármán Institute for Fluid Dynamics, B-1640 Rhode-Saint-Genése, Belgium

Abstract

This paper investigates the flow, heat transfer, and film cooling effectiveness of advanced high pressure turbine blade tips and endwalls. Two blade tip configurations have been studied, including a full rim squealer and a partial squealer with leading edge and trailing edge cutouts. Both blade tip configurations have pressure side film cooling and cooling air extraction through dust holes, which are positioned along the airfoil camber line on the tip cavity floor. The investigated clearance gap and the blade tip geometry are typical of that commonly found in the high pressure turbine blades of heavy-duty gas turbines. Numerical studies and experimental investigations in a linear cascade have been conducted at a blade exit isentropic Mach number of 0.8 and a Reynolds number of 9×105. The influence of the coolant flow ejected from the tip dust holes and the tip pressure side film holes has also been investigated. Both the numerical and experimental results showed that there is a complex aerothermal interaction within the tip cavity and along the endwall. This was evident for both tip configurations. Although the global heat transfer and film cooling characteristics of both blade tip configurations were similar, there were distinct local differences. The partial squealer exhibited higher local film cooling effectiveness at the trailing edge but also low values at the leading edge. For both tip configurations, the highest heat transfer coefficients were located on the suction side rim within the midchord region. However, on the endwall, the highest heat transfer rates were located close to the pressure side rim and along most of the blade chord. Additionally, the numerical results also showed that the coolant ejected from the blade tip dust holes partially impinges onto the endwall.

Publisher

ASME International

Subject

Mechanical Engineering

Reference28 articles.

1. A Further Retrofit Upgrade for Alstom’s Sequential Combustion GT24 Gas Turbine;Lanzenberger

2. Evolutionary Steps—A Further Performance Upgrade for Alstom’s GT13E2 Gas Turbine;Hoffs

3. Alstom’s GT26 Gas Turbine—A Field Proven Advanced Class Gas Turbine for All Duties;Philipson

4. Heat Transfer Coefficients on the Squealer Tip and Near-Tip Regions of a Gas Turbine Blade With Single or Double Squealer;Kwak;ASME J. Turbomach.

5. Heat Transfer Coefficient of a Turbine Blade Tip and Near Tip Regions;Kwak;J. Thermophys. Heat Transfer

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3