Tip and Junction Vortices Generated by the Sail of a Yawed Submarine Model at Low Reynolds Numbers

Author:

Jiménez Juan M.1,Smits Alexander J.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263

Abstract

Results are presented on the behavior of the tip and junction vortices generated by the sail of a SUBOFF submarine model at yaw angles from 6 deg to 17 deg for a Reynolds number of 94×103 based on model length. The measurements were conducted in a water channel on a spanwise plane 1.3 chord lengths downstream from the trailing edge of the sail. In the vicinity of the sail hull junction, the presence of streamwise vortices in the form of horseshoe or necklace vortices locally dominates the flow. As the yaw angle is increased from 6 deg to 9 deg, the circulation of the sail tip vortex increases, and is in good accordance with predictions from finite wing theory. However, as the yaw angle is further increased, the sail boundary layer separates with an overall drop in circulation. In contrast, the circulation value for the junction vortex increases with yaw angle, and only drops slightly at the highest yaw angle.

Publisher

ASME International

Subject

Mechanical Engineering

Reference22 articles.

1. Controlling Mechanism of Local Scouring;Dargahi;J. Hydraul. Eng.

2. Pier and Abutment Scour: Integrated Approach;Melville;J. Hydraul. Eng.

3. The Use of Scrap Tires for Scour Protection;Bilanin

4. The Intermediate Wake of a Body of Revolution at High Reynolds Numbers;Jiménez;J. Fluid Mech.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3