A Two-Temperature Model for the Analysis of Passive Thermal Control Systems for Electronics

Author:

Krishnan Shankar1,Murthy Jayathi Y.1,Garimella Suresh V.1

Affiliation:

1. Purdue University, West Lafayette, IN

Abstract

Passive control of unsteady thermal loads using phase change materials is being explored for a variety of military and consumer electronics applications. The phase change materials usually have very low thermal conductivity. To enhance the thermal response of the system, thermal conductivity enhancers like metal foams, internal fins and metal filler particles have been proposed. Local thermal equilibrium between the solid matrix and the fluid is not ensured in such systems since the thermal conductivities and heat capacities for the fluid and solid are very different. The use of a single volume-averaged energy equation for both the phases cannot be justified in such situations. A two-medium approach is developed in the present work to account for the local thermal non-equilibrium. Separate energy equations are written for the solid and fluid respectively, and are closed using a steady-state interstitial heat transfer coefficient between the two phases. A general momentum equation which includes the Brinkman-Forchheimer extension to Darcy flow is employed. The resulting equations are solved using a finite volume scheme. The influence of various parameters such as the ratios of fluid to solid conductivities and heat capacities, porosity, Rayleigh number, Prandtl number, and Darcy number on the thermal and flow fields is investigated. The importance of using a two-medium approach for such situations is illustrated using the results obtained.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3