A Numerical Study of Forest Fire Progression and Fire Suppression by Aerial Fire Fighting

Author:

Satoh Kohyu1,Kuwahara Kunio2,Yang K. T.3

Affiliation:

1. National Research Institute of Fire and Disaster

2. Institute of Space and Astronautical Science

3. University of Notre Dame

Abstract

Forest fires are of common occurrence all over the world, which cause severe damages to valuable natural resources and human lives. In the recent California Fire, which burned 300,000 hectors of land, the disaster danger could reasonably be predicted, but early control of fires by means of aerial fire fighting might have been failed in that situation. Also in Japan, there are similar problems in the aerial fire fighting. Most forest fires occur in the daytime and the fires are freely in progress without any control during the nighttime. Therefore, it is important to attack the fires when there is daylight. The water dropped by helicopters is not always sufficient to control fires, since the quantity of water that can be carried aloft is a critical issue. Large amount of water can be dropped from aircrafts, but the high-speed flight of aircrafts may be dangerous in the mountain, where tall trees and steel towers with electric wires may exist. Therefore, those aircrafts have to fly at much higher altitudes than helicopters, while the water drop at high altitudes changes water into mist in the air. The objective of this study is to examine the methods to prevent the ignition by firebrands in the downwind area by applying water through the aerial fire fighting. However, tests by real aircrafts to obtain such information would be too costly. Therefore, the patterns of water drop from aircrafts were examined in CFD simulations, together with the investigation of needed water drop rate based on the forest fire statistics, the previous real aircraft tests and laboratory experiments. It has been found in the simulations that the water supply with the water density of 2 L/m2 is effective to control fires and the patterns of dropping water are reasonable.

Publisher

ASMEDC

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3