Switch-Mode Continuously Variable Transmission With Flywheel Energy Storage

Author:

Forbes Tyler D.1,Van de Ven James D.1

Affiliation:

1. Worcester Polytechnic Institute, Worcester, MA

Abstract

A hybrid drive train significantly improves energy efficiency of ground vehicles. While numerous auxiliary hybrid power sources have been researched, few are capable of the energy and power density of a flywheel coupled with a continuously variable mechanical transmission. The primary challenge of a flywheel hybrid system is a transmission capable of coupling a high speed flywheel to the drive train of the vehicle. A novel solution to this challenge is a switch-mode continuously variable transmission that utilizes a rapidly switching clutch to transmit power. This system, the mechanical analog of a DC-DC boost converter circuit, utilizes a flywheel, a high frequency clutch, an anti-reversing ratchet, and a spring to vary the output torque. The switch-mode continuously variable transmission is demonstrated through an idealized finite difference model, created from the dynamic system of equations. The model is used to demonstrate the system behavior in a passenger car subjected to road loads in various conditions. The output of the model demonstrates pulses in the output torque as a result of the rapidly switching clutch. This output ripple in is smoothed to an acceptable level by the torsion spring. From this preliminary analysis the on-off continuously variable transmission offers an efficient, energy dense, and power dense hybrid vehicle drive train alternative.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improving the environmental performance of heavy-duty vehicles and engines: key issues and system design approaches;Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance;2014

2. Switch-Mode Continuously Variable Transmission Prototype Design and Testing;7th International Energy Conversion Engineering Conference;2009-06-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3