On Noise Control in Turbomachinery Using an Automated Multidisciplinary Design Optimization System

Author:

Idahosa Uyigue1,Golubev Vladimir1

Affiliation:

1. Embry-Riddle Aeronautical University

Abstract

In this work, we review our recent efforts to develop and apply an expanding database of aerodynamic and aeroacoustic prediction technologies for exploring new conceptual designs of propulsion system turbomachinery components optimized for high-efficiency performance with minimum noise radiation. In this context, we first discuss construction of our automated, distributed, industry-like multi-disciplinary design optimization (MDO) environment used in all the studies. The system was developed on the basis of commercially available optimization modules, and involves a user-friendly interface that provides an easy link to user-supplied response analysis modules. We address various issues in the automated optimization procedure with focus on turbomachinery design, including proper geometry parameterization, algorithms selection, and transparent interconnections between different elements of the optimization process. In a benchmark study testing the performance of the system in application to aero/acoustic optimization, we consider a problem of optimal blade design to minimize fan noise, a dominant source of sound radiation both in high-speed fan applications (such as high-bypass-ratio turbofans, propellers of turboprop and IC engines in general aviation, and helicopter rotors) and low-speed ones (including applications in automotive, computer, air-conditioning and other industries). Two approaches are investigated, with the first relying on commercial CFD software coupled with an unstructured mesh generator, and the second employing a panel-based aerodynamic code integrated with an integral acoustic solver. Success of various optimization algorithms (including gradient-based and evolutionary) in finding global minima of the objective function for a noise metric in both unconstrained and constrained optimization processes is examined.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Automated Optimal Design of a Fan Blade Using an Integrated CFD/MDO Computer Environment;Engineering Applications of Computational Fluid Mechanics;2008-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3