Steady-State Operation of a Loop Heat Pipe: Network Thermofluid Model and Results

Author:

Atabaki Nima1,Baliga B. Rabi1

Affiliation:

1. McGill University, Montreal, Quebec, Canada

Abstract

A network thermofluid model of a loop heat pipe (LHP) operating under steady-state conditions is presented. Attention is focused on a simple LHP, with one evaporator, a vapor transport line, a single condenser, a liquid transport line, and a compensation chamber. The evaporator is an internally grooved circular pipe, with a cylindrical wick installed on its inner surface. The wick is made of a sintered metal. The condenser is a horizontal tube covered with a high-thermal-conductivity sleeve, and the outer temperature of the sleeve is maintained at a constant sink temperature. Quasi one-dimensional mathematical models of the fluid flow and heat transfer in each of the elements of the LHP, and collectively of the entire LHP, are proposed and discussed. The working fluid considered in this work is ammonia, but the proposed model can work with any suitable fluid. Results pertaining to the LHP performance for a range of operating conditions are presented, compared (qualitatively) to corresponding results of an earlier experimental investigation in the literature, and discussed.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3