Modeling of Blade Tip Geometries in an Axial Compressor Stage

Author:

Stockhaus Carsten1,Volgmann Werner1,Stoff Horst1

Affiliation:

1. Ruhr-University Bochum, Bochum, Germany

Abstract

The purpose of this paper is to investigate numerically the tip leakage flow for different blade tip geometries in an axial compressor stage under design and off-design conditions. Using flat tips, suction and pressure side squealers in combination with knife tips, a comparison of the rotor performance in terms of pressure and efficiency gain is reported. Detailed flow characteristics within the tip clearance gap, interaction of the leakage flow with the main flow and resultant turning effects at the exit of the row have been investigated. The CFD method is based on a commercially available compressible Navier-Stokes solver (STAR-CD), using a turbulent compressible high Reynolds number k-ε model. Accurate numerical comparison of different blade tip geometries is achieved by using the same grid for the various shapes. The blocking strategy with O-grid structure is presented. The numerical results show clearly the beneficial effect of cutting away material from the pressure side. The higher surface curvature of the suction side squealer affects the pressure blade loading and increases the lift in the same way. This effect is increased by increasing the squealer height and results in a lower efficiency gain near the surge line. The best modification of the blade tip shows a maximum reduction of the tip discharge coefficient of 20 %. This leads to an improved total pressure ratio of 0.29% and an improved total polytropic efficiency of 0.40% under design condition. The influences of favourable squealer geometries on stage characteristics are described along an operating line. With a simulation of IGV-setting from Δα = −15° to Δα = +20° different operating points have been investigated in a swirl performance map. The beneficial effect of the suction side squealer found for the rotor row could assign to the stator row and results in an improved static pressure gain. Furthermore, design indications are presented which help to keep the efficiency gain under surge condition as high as possible.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3